✨Tử Vi Hàm Số

Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử -  Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng khoa ngày càng thịnh hành trong xã hội Việt - Nam hiện t...

Tử Vi Hàm Số

Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử -  Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng khoa ngày càng thịnh hành trong xã hội Việt - Nam hiện thời.

Số môn đệ hay tài tử chuyên nghiệp cũng Trần Đoàn rất đông đảo. Thiên hạ tin Tử - Vi, hay xem Tử - Vi và còn ham học Tử - Vi. Số này xuất hiện ở mọi giai tầng xã hội, từ giới trí thức đến giới kinh doanh, từ cơ quan hành chính đến đơn vị quân sự, chưa kể những người hành nghề xem bói. Việc hâm mộ ngành bói toán sinh ra nhiều giai thoại rất kỳ thú. Có quân nhân xem Tử - Vi trước khi hành quân, có chính trị gia xem Tử - Vi trước khi quyết định chấp chánh, có thương gia xem Tử - Vi trước khi đầu tư, có thanh niên xem Tử - Vi trước khi lập gia đình. Hầu hết những ai hoài nghi về xã hội hiện hữu đều có khuynh hướng thăm dò số mạng của mình trong khoa bói toán, dường như để tìm nơi huyền bí một đường lối hành động thích nghi trước những bất trắc của thời cuộc.

Bắt mạch đúng thị hiếu này, báo chí tập chí, thi nhau khai thác đề tài Tử - Vi để thu hút độc giả. Nào là lý giải, từ lá số của Tổng Thống Thiệu, Thiếu Tướng Kỳ, Đại Tướng Minh cho đến lá số những minh tinh, ca sĩ Việt Nam hoặc nguyên thủ ngoại quốc, nào là quảng bá kiến thức Tử - Vi trên mặt báo hay thuật lại những thành tích khám phá của những nhà lý số trên cuộc đời kỳ thú của một số nhân vật tên tuổi. Một số không nhỏ nhật báo có đăng trang Tử - Vi mỗi ngày. Hết tuần báo "Số Mạng", lại đến tuần báo "Khoa Học Huyền Bí", tiếp nhau khai thác Tử - Vi và những khoa bói toán khác. Thị hiếu đó đã khiến cho các ông thầy bói đương nhiên trở thành những nhân vật tai mắt vô cùng quan trọng trong việc chỉ điểm nếp sống cho đại chúng. Điều này cũng thúc đẩy một số không nhỏ bốc sư đã chịu khó tìm học xem bói để sinh nhai.

Cuốn sách gồm những nội dung chính như sau:

PHẦN I: Thiếp lập và luận đoán là số

Chương 1 - Cách thức thiết lập lá số

Chương 2 - Qui tắc đoán luận lá số 

PHẦN II: THAM LUẬN ĐẠI CƯƠNG VỀ TỬ - VI

Chương 1 - Luận về các cung

Chương 2 -  Luận về các sao

Chương 3 -  Luận về Bản Mệnh, Cục, Cách

Chương 4 -  Luận về Âm Dương Ngũ Hành

Chương 5 -  Luận về Hàm Số Tử - Vi

Chương 6 - Luận về giá trị khoa Tử - Vi.

👁️ 1 | ⌚2025-09-06 23:21:30.607
VNĐ: 160,350
Mua hàng tại Shopee giảm thêm 30%
Tử Vi Hàm Số
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Hàm Số (bìa cứng) Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Đẩu Số - Phân Tích Và Ứng Nghiệm Vận Số Tử vi đẩu số là một phương pháp đoán mệnh cổ xưa của người Trung Quốc với nội hàm bao gồm đầy đủ
Tử Vi (hay Tử Vi đẩu số) là một hình thức dự trắc vận mệnh đời người dựa trên cơ sở triết lý Kinh dịch với các thuyết âm dương, Ngũ hành, can bằng cách
Tử Vi (hay Tử Vi đẩu số) là một hình thức dự trắc vận mệnh đời người dựa trên cơ sở triết lý Kinh dịch với các thuyết âm dương, Ngũ hành, can bằng cách
Tử Vi Đẩu Số - Trung Châu Vận Đoán Tử vi đẩu số là một thành tố quan trọng của văn hóa thần bí Trung Quốc cổ đại. Bắt nguồn từ hệ thôhg tinh tú
Dự Đoán Đời Người Và Tứ Trụ Dự đoán theo 64 quẻ.Vận mệnh và thuật vận đoán,thuật chiêm tinh , thuật tử vi đẩu số ,thuật bát tự tử bình , thuật xem tướng, ấn
Thiệu Khang Tiết - Đệ Nhất Thần Số Đoán Mệnh: Tử vi đẩu số là một trong hai phái lớn của Mệnh lý học Trung Hoa cổ đại. Lý luận này xuất phát từ quan
SÁCH: ĐẦU TƯ CHẤT LƯỢNG Mã sản phẩm: 8936067603965 Tác giả : Lawrence A. Cunning Ham - Torkell T. Edile & Patrick Hargreaves Dịch giả :Thu Uyên NXB: NXB Thanh Niên Kích thước : 14.5
Thông tin chi tiết Mã hàng 8935088538904 Tên nhà cung cấp Minh Lâm Tác giả Thiệu Khang Tiết NXB Hồng Đức Trọng lượng(gr) 1110 Kích thước 19 x 27 Số trang 431 Hình thức Bìa
Tài liệu trình bày về: Phương trình vi phân cấp 1; phương trình vi phân cấp 2; phương trình vi phân cấp cao, các hệ thức truy hồi và hàm Green; hệ phương trình
Cuốn Giáo trình Toán cáo cấp cho các nhà kinh tế - Phần II: Giải tích toán học (Tái bản lần thứ tư) gồm nội dung sau: Chương 1: Hàm số và giới hạn Chương
Combo Sách Tâm Lý Học - Nghệ Thuật Giải Mã Hành Vi + Thay Đổi Cuộc Sống Với Nhân Số Học (Bộ 2Cuốn) Đổi Cuộc Sống Với Nhân Số Học Cuốn sáchThay đổi cuộc sống
Tên đề tài: Cơ sở robot công nghiệp. Fundamentals of Industrial Robots (Dùng cho sinh viên Đại học và Cao đẳng kỹ thuật) Tác giả: GS.TSKH. Nguyễn Văn Khang, GS.TS. Chu Anh Mỳ. Khổ sách:16
Trở Về Từ Cõi Sáng (Tái bản năm 2022) Nhà xuất bản : Nhà Xuất Bản Thế Giới. Công ty phát hành : First News. Tác giả : Nguyên Phong. Kích thước : 14.5 x
Trên Đỉnh Phố Wall Peter Lynch là nhà quản lý tài chính số 1 ở Mỹ. Quan điểm của ông là: Tất cả các nhà đầu tư trung bình đều có thể trở thành những
Đồ Giải Tướng Thuật (Thiệu Vĩ Hoa) - Chu Tước Nhi (dịch): Tướng thuật được lưu truyền từ hàng nghìn năm trước đến nay vẫn không hề mai một, lý do bởi nó bao hàm
Combo Chết Vì Chứng Khoán + Trên Đỉnh Phố Wall Chết Vì Chứng Khoán Đáp ứng nhu cầu ngày càng tăng trong việc tìm hiểu về cổ phần, cổ phiếu, chứng khoán, chiến lược đầu
GIỚI THIỆU SÁCH 1. Trên Đỉnh Phố Wall : Peter Lynch là nhà quản lý tài chính số 1 ở Mỹ. Quan điểm của ông là: Tất cả các nhà đầu tư trung bình đều
Animals Perfect for babies and toddlers, this adorable board book features a wide variety of animals from frog' to kitten'! With bright, easy-to-turn pages and a new animal on every page, this book is an
Trứng Như Ý (Kèm Bookmark) Vốn là kẻ đam mê trân thú, Bích Hoa vô cùng yêu thích quả trứng này, ngày ôm đêm ấp, một tấc không rời. Chỉ là… không ai nghĩ tới
The Secret Explorers And The Lost Whales Dive into the world of The Secret Explorers and learn about ocean life in this action-packed first installment in a brand-new fiction series. Meet The Secret Explorers! This
Sách - Vứt bỏ trái tim mong manh ------------
Tiếng Anh hiện nay đã là một ngôn ngữ phổ biến tại Việt Nam, được nhiều người sử dụng thường xuyên trong học tập, công việc hay sinh hoạt đời thường. Ngoài vai trò là
Internet Của Tiền Tệ Cuốn sách là tập hợp các bài nói chuyện của Andreas M. Antonopoulos, một trong những chuyên gia hàng đầu thế giới về blockchain và bit coin. Những bài nói chuyện
Ngược Dòng Thời Gian Để Yêu Anh - Tập 1 Katesurang là một sinh viên chuyên ngành Khảo cổ học, tuy giỏi giang nhưng lại sở hữu thân hình mập mạp với vẻ ngoài kém
Tự Xem Tướng Mặt Tự xem tướng mặt - Đại sư Lý Cư Minh dạy bạn: - Khái quát về thuật xem tướng. - Xem tướng 1 số bộ vị trên khuôn mặt. - Xem
Tác giả: Friedrich Nietzsche Người dịch: Nguyễn Anh Cường Ngôn ngữ: Tiếng Việt Năm xuất bản: 2024 Số trang: 396 Nhà phát hành: Thời Đại Nhà xuất bản: Tri Thức Kích thước: 13.5 x 20.5
1.Luyện giải đề HSK cấp 5 Công ty phát hành Công ty TNHH Giáo Dục Hải Hà Ngày xuất bản 2020-12-31 08:00:00 Loại bìa Bìa mềm Số trang 360 Nhà xuất bản Đại Học Sư
Tự Học Từ Vựng Tiếng Nhật Cấp Tốc Theo Chủ Đề Minh Nhật Bạn có học tiếng Nhật Bản, người học phải đối mặt với kho từ vựng vô cùng lớn, chưa kể càng lên
Tào Tháo - Thánh Nhân Đê Tiện (Tập 3) Tào Tháo là một tên tuổi trong lịch sử Trung Quốc, là người không chỉ tài giỏi trong lĩnh vực chính trị, quân sự và còn
Dọn Đường Tâm Lý, Thuyết Phục Chắc Thắng Điều gì làm nên sự khác biệt giữa một người giỏi giao tiếp và một người giỏi thuyết phục? Tác giả sách bán chạy Robert Cialdini, đồng
Phê Phán Lý Tính Thực Hành (Đạo Đức Học) là quyển thứ hai trong “bộ ba” Phê phán nổi tiếng của I. Kant và là một trong các tác phẩm quan trọng nhất trong kho
Le Deuxième Sexe - Giới Thứ Hai Được phát hành năm 1949, Giới thứ hai của Simone de Beauvoir là một phân tích triết học và lịch sử về cách phụ nữ bị xem là
Đỉnh Xuất Kỳ Nhân Có thể bạn vốn đã rất hâm mộ thiền sư Thích Nhất Hạnh, có thể bạn chỉ đang có ý định tu tập theo thiền sư, hoặc cũng có thể, bạn
Công ty phát hành: 1980 Books Tác giả: Nhiều tác giả Nhà xuất bản: NXB Đại Học Kinh Tế Quốc Dân Năm xuất bản: 2020 Số trang: 540 Giới thiệu sách: Việc tìm hiểu, nghiên
This Is Our World: From Alaska To The Amazon - Meet 20 Children Just Like You This Is Our World, written by Tracey Turner, is a colorful celebration of our planet’s cultural and environmental diversity―an
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Hàm Số (bìa cứng) Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Hàm Số bìa cứng Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Hàm Số bìa cứng Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Hàm Số bìa cứng Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Đẩu Số - Phân Tích Và Ứng Nghiệm Vận Số Tử vi đẩu số là một phương pháp đoán mệnh cổ xưa của người Trung Quốc với nội hàm bao gồm đầy đủ
Tử Vi (hay Tử Vi đẩu số) là một hình thức dự trắc vận mệnh đời người dựa trên cơ sở triết lý Kinh dịch với các thuyết âm dương, Ngũ hành, can bằng cách
Tử Vi (hay Tử Vi đẩu số) là một hình thức dự trắc vận mệnh đời người dựa trên cơ sở triết lý Kinh dịch với các thuyết âm dương, Ngũ hành, can bằng cách
Tử Vi Đẩu Số - Trung Châu Vận Đoán Tử vi đẩu số là một thành tố quan trọng của văn hóa thần bí Trung Quốc cổ đại. Bắt nguồn từ hệ thôhg tinh tú
Dự Đoán Đời Người Và Tứ Trụ Dự đoán theo 64 quẻ.Vận mệnh và thuật vận đoán,thuật chiêm tinh , thuật tử vi đẩu số ,thuật bát tự tử bình , thuật xem tướng, ấn
Trong toán học, một **hàm số** hay gọi ngắn là **hàm** (Tiếng Anh: _function_) là một loại ánh xạ giữa hai tập hợp số liên kết mọi phần tử của tập số đầu tiên với
thumb|220x124px | right | Giới hạn của hàm số f(x) khi x tiến tới a
Mặc dù hàm số không được định nghĩa tại , khi tiến
nhỏ| Hàm [[sin và tất cả các đa thức Taylor của nó đều là các hàm lẻ. Hình ảnh này cho thấy \sin(x) và các xấp xỉ Taylor của nó, các đa thức bậc 1,
Trong toán học, một **hàm số sơ cấp** là một hàm của một biến số và là tổ hợp của một số hữu hạn các phép toán số học , hàm mũ, logarit, hằng số
Trong toán học, một **hàm số cơ bản** là một hàm một biến số và là tổ hợp của một số hữu hạn các phép toán số học , hàm mũ, logarit, hằng số và
Trong lý thuyết số, **hàm** **số học**, hoặc **hàm số lý thuyết số** đối với hầu hết các tác giả nói đến bất kỳ hàm _f_ (_n_) nào có miền là số nguyên dương và
**Đồ thị của hàm số** _f_ trong toán học là tập hợp tất cả các cặp có thứ tự . Nếu đầu vào _x_ là một cặp có thứ tự các số thực thì đồ
Trong toán học, một **hàm số tự nghịch đảo**, là một hàm số f mà là hàm ngược của chính nó: : với mọi x trong tập xác định của f. ## Tính chất chung
thumb|right|300 px|Đồ thị hàm số của logarit tự nhiên. **Logarit tự nhiên** (còn gọi là logarit Nêpe) là logarit cơ số e do nhà toán học John Napier sáng tạo ra. Ký hiệu là: ln(x),
phải|nhỏ|210x210px|Đồ thị của một hàm số bậc ba với 3 [[Nghiệm số|nghiệm số thực (tại đó đường đồ thị cắt trục hoành—thỏa mãn ). Hình vẽ cho thấy hai điểm cực trị. Phương trình của
**Cực trị của hàm số** là giá trị mà hàm số đổi chiều biến thiên khi qua đó. Trong hình học, nó biểu diễn khoảng cách lớn nhất từ điểm này sang điểm kia và
Thiệu Khang Tiết - Đệ Nhất Thần Số Đoán Mệnh: Tử vi đẩu số là một trong hai phái lớn của Mệnh lý học Trung Hoa cổ đại. Lý luận này xuất phát từ quan
nhỏ|[[Đồ thị của hàm số (màu đen) và tiếp tuyến của nó (màu đỏ). Hệ số góc của tiếp tuyến bằng đạo hàm của hàm đó tại tiếp điểm (điểm được đánh dấu).]] Trong toán
[[Đồ thị hàm sin]] [[Đồ thị hàm cos]] [[Đồ thị hàm tan]] [[Đồ thị hàm cot]] [[Đồ thị hàm sec]] [[Đồ thị hàm csc]] Trong toán học nói chung và lượng giác học nói riêng,
Trong toán học, một **hàm liên tục** hay **hàm số liên tục** là một hàm số không có sự thay đổi đột ngột trong giá trị của nó, gọi là những điểm gián đoạn. Chính
**Lý thuyết thứ tự** là một nhánh trong toán học nghiên cứu thuật ngữ thứ tự bằng cách sử dụng các quan hệ hai ngôi. Nó cho một khung hình thức để có thể mô
**Hàm số bậc hai** là hàm số có dạng ax^2+bx+c=y trong đó a,b,c là các hằng số và {\displaystyle (a\neq 0)} . Hệ số hoàn toàn có thể ở y. x và y lần lượt
thumb|right|[[Đường cong Tschirnhausen là một ví dụ về đường cong đại số bậc ba.]] Trong toán học, **đường cong phẳng đại số affin** là tập nghiệm của đa thức hai biến. **đường cong phẳng đại
Trong toán học, thuật ngữ " **phiếm hàm** " (danh từ, tiếng Anh là **functional**) có ít nhất 3 nghĩa sau : nhỏ|451x451px|Phiêm hàm [[Chiều dài cung - Arc length|chiều dài cung đi từ miền
Trong toán học, **hàm hợp** là một phép toán nhận hai hàm số và và cho ra một hàm số sao cho . Trong phép toán này, hàm số và được **hợp** lại để tạo
Trong toán học, **hàm softmax**, hoặc **hàm trung bình mũ**, Biệt thức tuyến tính phân tích nhiều lớp, Phương pháp phân loại Bayes, và mạng neuron. Đặc biệt, trong hồi quy logistic đa biến và
Trong tính toán lượng tử, **thuật toán lượng tử** là một thuật toán chạy bằng mô hình thực tế của tính toán lượng tử, mô hình được sử dụng phổ biến nhất là mô hình
thumb|Đồ thị của hàm đồng nhất trên trường số thực Trong toán học, **hàm đồng nhất** (), còn gọi là **quan hệ đồng nhất**, **ánh xạ đồng nhất** hay **phép biến đổi đồng nhất**, là
thumb|Minh họa hàm tuần hoàn với chu kỳ P. Trong toán học, một **hàm tuần hoàn** là hàm số lặp lại giá trị của nó trong những khoảng đều đặn hay chu kỳ. Ví dụ
thumb|right|[[Hàm Lôgit]] thumb|Biểu đồ của [[hàm lỗi]] **Hàm sigmoid** là một hàm số có dạng đường cong hình "S" hay còn gọi là ** đường cong sigmoid**. Một ví dụ phổ biến của một hàm
Một hàm được định giá trị vectơ, cũng được gọi là **hàm vectơ**, là một hàm toán học của một hoặc nhiều biến với miền giá trị của nó là một bộ của những vectơ
Trong toán học, **hàm von Mangoldt** là hàm số học được theo tên nhà toán học Đức Hans von Mangoldt. Nó là một trong những ví dụ quan trọng về hàm số học không nhân
right|thumb|Đạo hàm bậc hai của một [[hàm số bậc hai là hằng số.]] Trong giải tích, **đạo hàm bậc hai** của một hàm số là đạo hàm của đạo hàm của . Có thể nói
Trong toán học và vật lý, **toán tử Laplace** hay **Laplacian**, ký hiệu là \Delta\,  hoặc \nabla^2  được đặt tên theo Pierre-Simon de Laplace, là một toán tử vi phân, đặc biệt trong các toán
Trong toán học, **hàm Dirichlet** là hàm chỉ thị \mathbf{1}_\Q của tập số hữu tỉ \Q, với \mathbf{1}_\Q(x) = 1 khi là số hữu tỉ và \mathbf{1}_\Q(x) = 0 khi không phải là số hữu
Trong toán học, **hàm đếm số nguyên tố** là hàm số đếm số lượng các số nguyên tố nhỏ hơn hoặc bằng với một số thực _x._ Nó được ký hiệu là (_x_) (không liên
phải|nhỏ|246x246px| Đồ thị của một đa thức bậc 5, với 3 nghiệm thực và 4 [[điểm cực trị. ]] Trong đại số, **hàm số bậc năm** là hàm số có dạng : g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\, trong đó
🍲 GIA VỊ HẦM THỊT, CHÂN GIÒ CAY TỨ XUYÊN 🍲 - Món hầm này dùng bắp bò, thịt vịt hay móng lợn, hầm rất lâu đến khi thịt thật là mềm. - Thịt hầm
thumb|Các phần số _n_ với hạng lớn nhất _k_ Trong số học, sự **phân hoạch** một số nguyên dương _n_ là cách viết số đó dưới dạng tổng của các số nguyên dương. Hai cách
SET GIA VỊ HẦM GÀ NHÂN SÂM HÀN QUỐC - Xuất xứ: Hàn Quốc- Trọng lượng: 100g Set gồm: táo đỏ, nhân sâm, hoàng kỳ, cát căn và 1 số nguyên liệu thảo dược khác,
thumb|right|Hàm lồi trên một đoạn khoảng cách. right|thumb|Một hàm (màu đen) là lồi nếu và chỉ nếu vùng phía trên [[đồ thị của hàm số của nó (màu xanh) là một tập lồi.]] thumb|Một đồ
phải|Sơ đồ hàm Weierstrass trong khoảng -2..2. Hàm có định dạng [[phân dạng, khi phóng to bất kỳ vùng tương tự vòng đỏ đều có định dạng tương tự cả sơ đồ chung.]] Trong toán
**Số hoàn hảo** (hay còn gọi là **số hoàn chỉnh**, **số hoàn thiện** hoặc **số hoàn thành**) là một số nguyên dương mà tổng các ước nguyên dương thực sự của nó (các số nguyên